
 
 

Structural, optical and antimicrobial properties of pure and Ag-
doped ZnO nanostructures

Sagar Vikal1, †, Yogendra K. Gautam1, †, Anit K. Ambedkar1, Durvesh Gautam1, Jyoti Singh2,
Dharmendra Pratap2, †, Ashwani Kumar3, Sanjay Kumar4, Meenal Gupta5, and Beer Pal Singh1, †

1Smart Materials and Sensor Laboratory, Department of Physics, Ch. Charan Singh University, Meerut, Uttar Pradesh 250004, India
2Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, Uttar Pradesh 250004, India
3Nanoscience Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee 247667, India
4Department of Physics, University of Rajasthan, Jaipur 302004, India
5Department of Physics, SBSR, Sharda University, Greater Noida, Uttar Pradesh, India

 

Abstract: In the present work, zinc oxide (ZnO) and silver (Ag) doped ZnO nanostructures are synthesized using a hydrotherm-
al  method.  Structural  quality  of  the  products  is  attested  using  X-ray  diffraction,  which  confirms  the  hexagonal  wurtzite  struc-
ture  of  pure  ZnO  and  Ag-doped  ZnO  nanostructures.  XRD  further  confirms  the  crystallite  orientation  along  the c-axis,  (101)
plane.  The  field  emission  scanning  electron  microscope  study  reveals  the  change  in  shape  of  the  synthesized  ZnO  particles
from  hexagonal  nanoparticles  to  needle-shaped  nanostructures  for  3  wt%  Ag-doped  ZnO.  The  optical  band  gaps  and  lattice
strain of nanostructures is increased significantly with the increase of doping concentration of Ag in ZnO nanostructure. The anti-
microbial activity of synthesized nanostructures has been evaluated against the gram-positive human pathogenic bacteria, Sta-
phylococcus aureus via  an agarose gel  diffusion test.  The maximum value of  zone of  inhibition (22 mm) is  achieved for  3  wt%
Ag-doped ZnO nanostructure and it clearly demonstrates the remarkable antibacterial activity.
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1.  Introduction

Nanotechnology  is  one  of  the  developing  fields  of  re-
search in smart material sciences. It involves efficient manipula-
tion,  fabrication  and  stabilization  of  matter  at  an  atomic  and
molecular  level  that  ranges  between  1  to  100  nm[1, 2].  Large
surface area-to-volume ratio with unique conformation and dis-
tribution  of  nanoparticles  (NPs)  are  responsible  for  their  en-
hanced  physical  and  chemical  properties.  The  nanomaterials
are  used for  many applications  such as  catalysis,  antimicrobi-
al, agriculture, antioxidant, sensing devices and pharmaceutic-
als,  etc.[3].  Various  nanostructured  metal–oxide–semiconduct-
ors  (NMOS)  such as  zinc  oxide (ZnO),  copper  oxide (CuO),  sil-
ver  oxide  (Ag2O),  titanium  dioxide  (TiO2),  magnesium  oxide
(MgO) and calcium oxide (CaO) have been studied for their an-
timicrobial activity. In vitro studies, it has been shown that met-
al  nanoparticles  have  the  ability  to  prevent  several  microbial
species[4]. In the context of bulk material, NMOS show remark-
able antimicrobial properties[5].  Among various NMOS, ZnO is
an  important  inorganic  semiconducting  material  because  of
its  high  thermal  stability,  oxidation  resistivity,  photo-stability
and  high  electron  mobility[6].  ZnO  are  mostly  nontoxic  and
used  for  various  applications  like,  photodetectors,  UV-LEDs,

thin film transistor, solar cells[7] and drug delivery, etc.[8, 9].
ZnO  NPs  exhibit  antibacterial  activity  against  a  variety  of

pathogenic  bacteria.  The  activity  includes  various  process
such  as  the  generation  of  reactive  oxygen  species  (ROS),  cell
membrane  integrity  disruption,  enzyme  inhibition[10].  ZnO
NPs  also  exhibit  antibacterial  effect  by  disrupting  the  integ-
rity of the cell membrane by the loss of phospholipid bilayer in-
tegrity  and  leakage  of  intracellular  components  of  the  cell
that leads to cell death[4, 11−15].  Doping is an effective method
in order to improve physical and optical properties of ZnO[15].

Among various  noble  metals,  Ag has  great  potential  due
to its unique properties such as good oxygen adsorption beha-
vior,  relatively  non-toxic,  cheaper,  high  thermal  conductivity,
high  solubility,  good  electrical  conductivity  etc.  Ag-decor-
ated  materials  are  used  to  treat  infections  caused  by  patho-
gens[16−23].  Ag-doped  ZnO  nanoparticles  have  been  ex-
amined  for  various  biomedical  use  such  as  wound  and  can-
cer treatment[24−29].

Recently, many researchers have been investigated micro-
structural  effect  (nanoparticles,  micro/nanoflowers,  hybrid
nanostructures,  hierarchically  structures)  of  Ag-doped  ZnO
on their antimicrobial performance[30−37].  Bechambi et al.  also
investigated  the  antibacterial  activities  using  ZnO  modified
catalysts  with  various  silver  contents  which  they  synthesized
using  a  hydrothermal  method[38].  Darroudi et  al.  showed  the
10 mm inhibition zone by a nickel  oxide nanoparticle against
the S.  aureus bacterium  prepared  by  the  sol-gel  method[39].
Pathak et al. observed a significant enhancement in antibacteri-
al  activity  in prepared Ag-doped ZnO against S.  aureus.  Zone
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of inhibition (ZOI) was recorded 9 and 10 mm against S. aure-
us for  pure  ZnO  and  Ag-ZnO  NPs,  respectively[40].  Ag-ZnO
NPs  prepared  by  a  green  approach  using Cannabis  sativa
leaves  have  shown  improved  antimicrobial  activity  (ZOI  ~  16
mm) than the pure ZnO (ZOI ~ 10 mm) [41].

For the synthesis of NMOS, hydrothermal is preferred be-
cause it produces high crystalline structures. The hydrotherm-
al  method  is  also  cost  effective,  eco-friendly,  easy  to  handle
and known as a low-temperature synthesis method[42].

In  this  paper,  we  have  been  synthesized  ZnO  nanostruc-
tures by using a facile single step hydrothermal method. Anti-
microbial  properties  of  pure  ZnO  and  Ag-doped  ZnO  nano-
structures have been investigated. 

2.  Preparation of nanostructures

ZnO  NPs  were  synthesized  by  the  hydrothermal  method
using zinc chloride (ZnCl2) (Sigma Aldrich) and sodium hydrox-
ide (NaOH) (Sigma aldrich) as precursors. Different concentra-
tion of ZnCl2 and 1 M NaOH solution was prepared in 100 mL
distilled  water  under  stirring  for  2  h.  Furthermore,  the  ingot
solution was retained into the autoclave (Teflon-lined, sealed)
and  heated  at  200  °C  for  7  h  under  autogenously  pressure.
Thereafter,  it  was cooled at  room temperature.  After  comple-
tion of the process, white precipitate was washed with deion-
ized  water  and  further  dried  in  an  oven  at  150  °C  for  2  h.  Fi-
nally, the fine powder of pure ZnO NPs was achieved by grind-
ing.  Silver  nitrate  (AgNO3)  (Sigma  Aldrich)  and  ZnCl2 were
used  as  precursors  to  obtain  the  Ag-doped  ZnO  nanostruc-
ture. Zn1–xAgxO (where x = 0.5, 0.75 and 1) fine white powder
was  obtained  via  the  same  process  as  obtained  pure  ZnO
NPs. ZnO and Ag-doped ZnO nanostructured samples were an-
nealed at  800 °C for  2 h in a muffle furnace.  A schematic dia-
gram  of  hydrothermal  process  used  to  synthesis  pure  and
Ag-doped ZnO nanostructures is shown in Fig. 1. The chemic-
al  Eqs.  (1)  and  (2)  used  for  synthesizing  pure  and  Ag-doped
ZnO nanostructures are as follows: 

ZnCl + AgNO + NaOH + HO → Zn(OH) + AgOH +
NaCl + NaNO + HO (wash with DD HO (4 times)),

(1)
 

Zn(OH) + AgOH Δ
−→ ZnO + AgO + HO. (2)

 

3.  Characterization

The  crystal  structure,  lattice  plane  and  crystallite  size  of
prepared ZnO nanostructures were determined by an X-ray dif-

fractometer (Bruker AXS, D8 Advance). The XRD pattern was re-
corded  by  CuKα radiation  with  about  1.54060  Å  (2θ range
from  20°  to  80°).  The  surface  morphology  of  ZnO  nanostruc-
tures  was  examined  by  FESEM  (FEI,  Quanta  200F)  and  their
composition was determined by energy dispersive X-ray analys-
is  (EDX).  Photoluminescence  (PL)  (FLS  980,  Edinburgh  Instru-
ment)  was  used  to  study  the  optical  properties  of  the  pre-
pared ZnO nanostructures. 

4.  Antibacterial activity of ZnO NPs

The  agar  well  diffusion  method[43] was  used  to  investig-
ate  the  antibacterial  activity  of  the  prepared  ZnO  nanostruc-
tures  against  gram  positive  bacterial  strain  of Staphylococ-
cus aureus.  One mL of active secondary culture (1 × 108 CFU)
of S.  aureus was  swabbed  uniformly  onto  sterile  petri  plates
containing  Luria-Bertani  agar  media.  The  plates  were  punc-
tured using cork borer to make four wells each having diamet-
er of 8 mm. The wells were loaded with 100 μL of distilled wa-
ter  (negative  control),  Ampicillin  (Antibiotic),  ZnCl2 (precurs-
or)  and  ZnO  nanostructure  further  each  were  incubated  at
37 °C for 24 h in dark. The experiment was repeated in triplic-
ate and zones of inhibition observed were recorded and meas-
ured. 

5.  Results and discussion
 

5.1.  Structural study of pure ZnO and Ag-doped ZnO

nanostructures

XRD  pattern  of  pure  ZnO  and  Ag-doped  ZnO  nanostruc-

 

 

Fig. 1. (Color online) The schematic diagram of hydrothermal method.
 

Fig.  2.  (Color online)  XRD patterns of  pure and Ag-doped ZnO nano-
structures.
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tures  with  different  Ag  doping  concentrations  are  shown  in
Fig.  2.  The  diffraction  peaks  are  observed  at  2θ values  of
31.76°,  34.41°,  36.24°,  47.62°,  56.54°,  62.88°,  67.93° and 69.09°,
for  the  reflection  from  lattice  planes  (100),  (002),  (101),  (110),
(103),  (112),  (201)  and  (200),  respectively  and  all  are  good
matches  with  pure  ZnO  structure  [JCPDS  card  number  36-
1451].  The  XRD  patterns  of  Ag-doped  ZnO  nanostructures
show  the  reflections  at  38.04°,  44.30°  and  77.35°  correspond-
ing  to  Ag  along  the  lattice  planes  (111),  (200)  and  (311),  re-
spectively  [JCPDS  card  number  04-0783].  The  crystallite  sizes
of ZnO nanostructures are observed to be decreased with in-
crease  of  Ag  doping  concentration  (Table  1).  This  crystallite
size  modification  could  be  due  to  the  fact  that  ionic  radii  of
Ag (0.126 nm) are far greater than that of Zn (0.074nm)[44]. Fur-
thermore,  slight  peak  shifting  and  the  decrease  of  crystallite
size  of  ZnO  in  XRD  pattern  of  Ag-doped  ZnO  (Fig.  2)  affirms
the incorporation of Ag+ ions in the ZnO lattice sites.  The ob-
served peaks of Ag in the XRD patterns clearly shows the form-
ation of crystalline Ag clusters in the nanostructures as repor-
ted  in  earlier  studies[44].  Similar  to  other  monovalent  dopant
such as Na+ and K+, Ag has also occupied both the lattice and
interstitial sites[44]. The intensity of the XRD peaks of Ag corres-
ponding  to  the  planes  (111),  (200)  and  (220)  increases  with
the increasing doping concentration of  Ag in ZnO (Fig.  2).  As
the  Ag  concentration  increases,  the  diffraction  peaks  gradu-
ally increase towards the higher angle clearly suggests the suc-
cessful incorporation of Ag in ZnO[38, 45]. The crystallite orienta-
tion is observed along the c-axis, (101) plane for all the synthes-
ized  pure  ZnO  and  Ag-ZnO-doped  nanostructures.  This
highest  intensity  of  the  XRD  peaks  along  (101)  plane  in  pure
ZnO  is  due  to  the  low  surface  energy  with  favorable  condi-
tion for the growth along (101) orientation[18].  While the high
intense  XRD  peak  along  (101)  plane  in  the  Ag-doped  ZnO
nanostructures  is  the  result  of  heterogeneous  nucleation  en-
abled  in  the  existence  of  Ag+ ions.  The  growth  rate  in  the
(101)  direction  may  be  enhance  by  the  reduction  in  doping
stress  in  the  ZnO  lattice  caused  by  the  larger  radius  of  Ag+

ions than the host Zn2+ ions[18].
The crystallite size of pure ZnO and Ag-doped ZnO nano-

structures were calculated by Scherrer's formula[18] for high in-
tense  peak  of  plane  (101)  and  the  corresponding  values  are
given  in Table  1.  The  crystallite  size  is  found  to  be  reduced
from  ~  51  to  47  nm  with  Ag  doping  concentration  of  0–3
wt%.  Lattice  constant  (a and c)  of  prepared  ZnO  nanostruc-
tures were computed by using Eq. (3) [46]. 


d

= 

(h + hk + k

a
) , (3)

where d and (hkl) are inter-plane spacing and miller indices, re-
spectively. Lattice parameters (a and c) are defined as: 

a = λ√
sinθ

, c = λ
sinθ

,

where λ and θ are X-ray wavelength and Bragg's angle, respect-
ively.  It  has  been  found  that  lattice  parameters  of  Ag-doped
ZnO nanostructures are increased with the increase of Ag dop-
ing content in ZnO (Table 1). This is due to the tiny ionic radi-
us of Zn in compare to ionic radius of Ag[47].

Williamson's  and  Hall's  Eq.  (4)[46] was  used  to  obtain  the
lattice strain (ε) of synthesized nanostructures. 

βcosθ = .λ
D

+ εsinθ, (4)

where β, λ, D, θ and ε is  full  width  at  half  of  the  maximum
(FWHM),  wavelength  of  X-ray  used,  crystalline  size,  Bragg's
angle,  and  lattice  strain,  respectively.  The  values  of  lattice
strain (ε) are increased due to prompted lattice defects origin-
ated  by  the  insertion  of  Ag  in  ZnO  nanostructures  (Table  1).
W–H  analysis  reveals  that  all  ZnO  particles  have  positive
(tensile)  lattice  strain  (Fig.  3)  and  stretched  may  be  the  reas-
on  of  this  strain  present  in  the  prepared  nanostructures[48].
An  enhancement  in  tensile  strain  is  observed  in  Ag-doped
ZnO  nanostructures  and  this  may  be  due  to  the  reduction  in
number of  unit  cell  per crystallite with increase of  Ag dopant
percentage in ZnO[48]. 

5.2.  XPS analysis

Core level spectra is illustrated in the Figs. 4(a)–4(c), corres-
ponding  to  pure  Ag  3d  and  Zn  2p  and  Ag-doped  ZnO  nano-
structures probed by X-ray photoelectron spectroscopy (XPS).
It  is  clearly  realized that  the (1–3 wt %) Ag-doped ZnO nano-
structure  shows  three  components:  Zn,  Ag,  and  O.  The  fea-
tures attributed to the Ag peak is slightly weak due to the in-
corporation  of  Ag  ions  in  ZnO  due  to  the  small  scattering
cross  section.  From  the Fig.  4(a),  the  binding  energies  367.5
and  373.6  eV  are  observed  for  the  peaks  of  Ag  3d5/2 and  Ag
3d3/2, respectively. It confirms that the Ag is successfully incor-
porated  within  the  crystal  lattice  of  ZnO.  In Fig.  4(b),  two
peaks are observed at 1021.4 and 1044.5 eV in the high-resolu-
tion  spectrum  and  these  are  attributed  to  the  Zn  2p3/2 and
Zn 2p1/2, respectively. It approves the Zn2+ oxidation state. Fur-
thermore, a peak is found at 531.2 eV correspond to the O 1s
and  it  is  related  to  the  surface  hydroxyl  oxygen,  as  shown  in
Fig. 4(c). The surface hydroxyl oxygen can inhibit photo-gener-
ated  electron–hole  recombination.  The  elemental  analysis
(XPS) of the Ag-doped ZnO nanostructure reveals the success-
ful inclusion of Ag atoms into ZnO host matrix[49]. 

5.3.  Surface morphology study of pure ZnO and Ag-

doped ZnO nanostructures

The  prepared  ZnO  and  Ag-doped  ZnO  nanostructures
were  investigated  using  FESEM  in  order  to  examine  the  sur-
face morphology. The surface morphology and elemental com-

Table 1.   Crystallite size and lattice parameters of pure ZnO and Ag-doped ZnO nanostructures.

S. No. Sample
Lattice parameters (Å)

Lattice strain (10–3) Crystallite size from XRD (nm) Band gap (eV)
a = b c

1 Pure ZnO 3.24090 5.19128 1.36 50.74 2.35
2 1 wt% Ag-doped ZnO 3.24640 5.20163 1.48 48.34 3.17
3 2 wt % Ag doped ZnO 3.24818 5.20433 1.61 48.20 3.18
4 3 wt% Ag doped ZnO 3.24871 5.20503 1.68 47.32 3.19
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Fig. 3. (Color online) W–H analysis for pure and Ag-doped ZnO nanostructures.

 

 

Fig. 4. (Color online) XPS analysis for (a) Ag 3d, (b) Zn 2p and (c) O 1s.
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position  of  pure  ZnO  and  Ag-doped  ZnO  nanostructures  are
shown in Fig.  5.  FESEM images of  pure ZnO particles  demon-
strate a hexagonal-like structure. The FESEM results are found
to  be  consistent  with  XRD  results.  Ag-doped  ZnO  nanostruc-
tures  clearly  depicts  the  needle-shaped  nanorods  structure
with very small diameter [Figs. 5(e) and 5(g)]. The rods have a
broad  hexagonal  base  with  circular  tips.  The  magnified  im-
age  shows  its  hexagonal  morphology  with  pointed  tips  (Fig.
5(g)).  The morphological  change from hexagonal  (ZnO nano-
structures) to needle-shaped nanorods (Ag-doped ZnO nano-
structures)  could  be  due  to  the  replacement  of  Ag2+ to  Zn2+

in  the  ZnO  lattice[44].  The  atomic/weight  percentage  ratio  of
Ag  and  Zn  presenting  in  the  Ag-doped  ZnO  nanostructures
was estimated by EDX analysis. The elemental analysis (EDAX)
confirms that synthesized ZnO and Ag-doped ZnO nanostruc-
tures contain Zn, O and Ag elements in their appropriate stoi-
chiometric ratio as shown in Figs. 5(b), 5(d), 5(f), and 5(h). 

5.4.  Photoluminescence (PL) analysis

The  photoluminescence  (PL)  spectra  of  pure  ZnO  and
Ag-doped ZnO nanostructures were recorded at room temper-

ature  for  the  wavelength  (350–800  nm)  (Fig.  6).  Xenon  lamp
with excitation wavelength of  329 nm was used to  record PL
spectra  of  all  samples.  The  PL  spectra  depict  two  emission
bands at  wavelength 389 and 527 nm with different intensit-
ies for pure ZnO sample.  The PL spectra peak analysis reveals

 

 

Fig. 5. FESEM with EDAX image of (a, b) pure ZnO, (c, d) 1 wt% Ag-doped ZnO, (e, f) 2 wt% Ag-doped ZnO and (g, h) 3 wt% Ag-doped ZnO.

 

Fig.  6.  (Color online) PL emission spectra of pure ZnO and Ag-doped
ZnO nanostructures.

Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/032802 5

 

 
S Vikal et al.: Structural, optical and antimicrobial properties of pure and Ag-doped ZnO ......

 



that  peak  at  389  nm  is  ascribed  to  the  optical  excitation  and
broad  peak  at  527  nm  is  attributed  to  oxygen  vacancies
presenting in ZnO lattice. The peaks at 527 nm for green emis-
sion may be due to the radiating defects followed by the inter-
face traps holding on the grain boundaries[50]. The visible emis-
sion  commonly  designated  as  deep  level  emission  (DLE)
might  be  related  to  the  variation  of  the  intrinsic  defects  in
ZnO such as zinc vacancy, oxygen vacancy, interstitial zinc, in-
terstitial oxygen and antisite oxygen[51].

The  green  emission  is  the  result  of  recombination  of  the
electrons in single ionized oxygen vacancies and the recombin-
ation  of  a  photo-initiated  hole  with  a  single  ionized  charge
state  of  the  point  defects  (oxygen  vacancies  and  Zn  intersti-
tial)[52, 53].  The  peak  intensity  corresponding  to  389  nm  is  re-
lated  to  the  oxygen  vacancies  and  it  is  found  to  be  reduced
with  an  increase  in  doping  concentration  of  Ag  in  the  ZnO
nanostructure.

The  intensity  at  389  nm  initially  decreases  for  1  wt%  Ag
doping, and then increases for higher (>1 wt%) Ag doping con-
centrations. This can be attributed to Ag+ ions incorporation in-
to  the  ZnO  nanostructures  by  two  different  mechanisms:  (i)
substitution of  Zn+2 ions  fashioning more ionized oxygen va-
cancies  and  (ii)  including  as  interstitials  Ag.  Whereas  for  low
concentration of Ag doping most of the Ag+ ions might have
been inserted into the ZnO lattice substitutionally. In the case
of higher Ag doping concentration, the more quantity of Ag+

ions  included  into  the  ZnO  nanostructure  interstitially.  Thus,
higher  doping  concentration  of  Ag  produces  more  amounts
of lattice defects in ZnO nanostructures[44].

While the intensity of the emission peak at 638 nm is de-
creased with decrease in Ag doping amount (Fig. 6). The pres-
ence  of  Ag  nanostructures  on  the  surface  of  ZnO  nanorods
may  be  the  cause  of  this  quenching.  Further,  the  peaks  at
638  nm  for  the  red  emission  show  a  shallow  level  emission
(DLE)  associate  with  the  localized  levels[54].  Because  the  de-
fects  in  pure  and  Ag-doped  ZnO  samples,  are  found  doping
(Ag) concentration dependent. The energy band gaps of pure
ZnO  and  Ag-doped  ZnO  nanostructures  were  calculated  by
PL spectra using Eq. (5)[55] and the values are listed in Table 1. 

E = 
λnm

, (5)
 

5.5.  Antibacterial activity
The antimicrobial  activity  of  synthesized pure ZnO nano-

structures and Ag-doped ZnO NPs were assessed and their an-
tibacterial activities against S. aureus were clearly observed in
the agar  well  diffusion method.  The difference in the zone of
inhibition  of  pure  ZnO  NPs  and  Ag-doped  ZnO  nanostruc-

tures  in  comparison  to  the  Zn+2 and  Ag+ ions  (100 μL  of  0.7
M  of  ZnCl2 and  AgNO3 solution)  were  evident  and  recorded.
The zones of inhibition of 18 mm for the pure ZnO nanostruc-
tures and 19, 20 and 22 mm for Ag-doped ZnO NPs for concen-
tration  of  1,  2  and  3  wt%,  respectively  are  achieved  (Figs.  7
and 8 and Table 2). The results also show that S. aureus exhib-
its the resistivity against the ampicillin antibiotic at 25 mg/mL
concentration similar to earlier reports[56].

Two possible mechanisms have been defined the interac-
tion between bacteria and ZnO nanostructures: (i) decomposi-
tion  of  ZnO  results  in  formation  of  ROS  (hydroxyl  radicals,
Zn2+ ions,  singlet  oxygen and H2O2),  which leads to  destruct-
ive  interaction  with  bacteria  and  grounds  their  death  and  (ii)
ZnO  nanostructures  can  gather  on  the  surfaces  of  bacteria
and  leads  disorganization  of  cellular  function  and  interrup-
tion of cellular membranes. The antibacterial activity of the syn-
thesized  ZnO  nanostructures  might  be  due  to  the  above
defined mechanisms independently or cumulatively[57].

It has been reported that the antibacterial activity of ZnO
nanostructures  improved  with  the  reducing  of  particle  size.
High  surface-to-volume  ratio  of  the  prepared  needle-shaped
ZnO  NPs  is  one  of  the  reasons  of  such  enhanced  antibacteri-
al  activity.  Ag doping into ZnO matrix is  described to rise the
Zn2+ ions  releasing  in  water  and  participating  efficiently  in
the antibacterial  activity.  An enhancement in Zn ions is prob-
able  on  the  interstitial  sites  by  the  doping  of  Ag  ions  on  the
sites of Zn ions in host matrix. These Zn ions may also be eas-
ily free from interstitial sites than from their native sites. In ad-
dition,  Ag+ ions  of  Ag-doped  ZnO  nanostructures  may  also
be released and this leads to the enhancement of the antibac-
terial activity[58]. Ag doping creates more defects such as Zn in-
terstitial and oxygen vacancies in ZnO host matrix. Hence, Ag
doping  into  ZnO  nanostructure  enhances  efficiently  the  anti-
bacterial  activity  due  to  an  increase  in  the  number  of  Zn2+

ions and the defects[58]. 

6.  Conclusions

We  have  demonstrated  the  present  fast  and  controlled

 

 

Fig. 7. Zone of inhibition of (a) pure ZnO, (b) 1 wt% Ag-doped ZnO, (c) 2 wt% Ag-doped ZnO, and (d) 3 wt% Ag-doped ZnO.

 

Fig. 8. (Color online) Antibacterial activity of pure ZnO and Ag-doped
ZnO nanostructures against Staphylococcus aureus.
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one-step  method  of  ZnO  nanomaterials  preparation  by  low
temperature  hydrothermal  method.  XRD  results  evaluated
the  quality  of  the  prepared  nanostructures.  Ag  incorporation
in  ZnO  alters  the  structural,  surface,  optical  and  antibacterial
properties.  FESEM  images  depict  the  change  of  morphology
from hexagonal shape nanostructure (ZnO) to needle-shaped
nanorods  (Ag-doped  ZnO).  The  synthesized  pure  ZnO  and
Ag-doped  ZnO  nanostructures  have  shown  the  antibacterial
activity  against  gram  positive  human  pathogenic  bacteria S.
aureus. A  remarkable  enhancement  in  antimicrobial  activities
is also observed through the doping of Ag in a pure ZnO nano-
structure. Hence, the prepared nanostructures possess the pro-
found  applications  in  the  pharmaceuticals,  cosmeceuticals
and agricultural industries. 
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